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Analysis of Bending Fracture Propagation of Laminar 
Composite Materials Using Quasi-Molecular Dynamics 

Youngsuk Kim* and Junyoung Park** 
(Received December 13, 1997) 

Recently, quasimolecular dynamics has been successfully used to simulate the deformation 

characteristics of actual size solid materials. In quasimolecular dynamics, which is an attempt 

to bridge the gap between atomistic and continuum simulations, molecules are aggregated into 

large units, called quasimolecules, to evaluate large scale material behavior. In this paper, a 2 

-dimensional  numerical simulation using quasimolecular dynamics has been performed to 

investigate laminar composite material fracture and crack propagation behavior in the uniform 

bending of laminar composite materials. We verified that laminar composite materials deform 

quite differently from the case of homogeneous materials under bending deformation 
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1. Introduction 

Recently, a new approach has tried to simulate 

the fracture processing of materials at the micro- 

scopic level using molecular dynamics(MD).  The 

MD deals with the interacting behavior among 

molecules in order to reveal fracture behavior 

(Decelis, et al. , 1983; Kitagawa, et al. , 1993). 

Nevertheless, material size that can be analysed 

using MD is limited because the material of actual 

size is composed of an infinite number of mole- 

cules. The, quasimolecular dynamics (QMD) 

approach proposed by Greenspan makes such an 

analysis possible, in that molecules are aggregated 

into large units, called virtual quasimolecules 

(Greenspan, 1986;, Greenspan, 1989). Investiga- 

tions of QMD to industrial applications have 

been performed, with the exception bending simu- 

la t ion(Kim and Park, 1997). 

The study of  tl~e fracture behavior of laminar 

composite materials is motivated by practical 

situations encountered in the aerospace industry, 

the hull structure of chemical tankers, and other 
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fe lds  in which these materials are used extensive- 

ly(Mait i  and Sinha, 1996; Suga, et al, 1989). The 

situation is critical when the crack or void 

induces serious damage, detectable or undetecta- 

ble by visual inspection, that causes a reduction in 

the strength and stability of the structure. 

In this paper, crack generation and propagation 

of laminar composite materials subjected to uni- 

form bending is numerically simulated and dis- 

cussed within the framework of Greenspan's 

QMD method. Moreover we verify that laminar 

composite materials deforms quite differently 

from homogeneous materials under uniform ben- 

ding d e f o r m a t i o n ( K i m  and Park ,  1997; 

Triantafyllidis, et a l . ,  1982; Kim and Park, 1998). 

2. Basic  Theory 

Consider a rectangular Cu-pla te  'which is 8 x  

19. 9186em as in Fig. I. F rom the Lennoard  

-Jones potential function acting between two 

atoms r k  apart, 

@(r )  == 

(erg-) 

1.398068)< 10 10 1.55104X 10 s . . . . . . . . . . . . . . . . . . .  J / -  . . . . . . . . . . .  
y 6  ? . 1 2  

(i) 

while the force F interacting between two copper 

atoms is derived as follows(Greenspan, 1986) 
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Fig. 1 The initial arrangement for the homogeneous 
material specimen. 

dO 
F ( r ) -  d r  

8.38840x 10 e 1.866125x 10 
= r r  + s, la (dyn)  (2) 

in which r is measured in angstroms. Here we 

assume virtual quasimolecules  are an aggregation 

of  many molecules into larger units, and the 

equi l ib r ium-dis tance  between quasimolecules  is 

0.2cm. This means that each quasimolecule  con- 

tains Cu-molecu les  of  number  of  N ~ =6.47323 ;x 

10~:L Therefore,  its mass is m N "  * 1.0542X 10 -'e 

(g) =6 .824079•  10-"(g).  Here the force function 

interacting between two quasimolecutes is given 

b y ( K i m  and Park, 1998) 

c ;  +H_ (3) 
F ( R ) -  Ra R5 

From the condi t ion F ( 0 . 2 ) - - 0  and the energy 

conservat ion law, the force function acting 

between two quasimolecules  is derived as follows 

3.262974315 0.130518972 
F ( R )  .................... le a - -  + ..... 1 , ~  (4) 

We now introduce a normal iz ing constant a 

such that at a distance 0.4era the force between 

the quasimolecules  is small relative to their 

weight. If we define "small relative to weight" to 

mean 0.1% of the effect the weigbt, then we must 

have 

a - 3.262974315 0 130518972 
(0.4)~ ~ (o7-4i-~-- 

< (0.001) �9 980m (5) 

which results in our choice a=: 1.25 • 10 10 

(Greenspan,  1989), where the number  980 is the 

acceleration of  gravity. The dynamical  equat ion 

for the" motion of  each quasimolecule  is 

Fig. 2 Potential function for composite. 

d2R~ 10 10 ) [ (  3.262974315 
m - ~ 2  = (1.25 • 52. L, (R,:i) 3 

0.130518972 '~ R,,  ] 
+ ~ P  JRTjj (6) 

in which R~. is a pos i t ion  vector  of  the po in t  

p,,  and Rij is a posit ion vector with initial point 

p,. and terminal point pj. The summation is taken 

over  the neighbors of  /9.. By introducing the 

t ransformat ion relations R * = 4 R  and T e -1012  , 

Eq. (6) reduces to 

d"R* ~ . [ (  1.530099184 0.979263473 ~ 
dT  2 L, (R*)  a § (R*)  ~ ] 

-R-~-I (7) 

Because we wish to simulate the bending behav- 

ior of  a laminar  composi te  material with two 

layer, we should assume 3 potent ia ls -a  potential 

for material I -mater ia l  I bonding,  a potential for 

material 2 material 2 bonding,  and a potential for 

material I material 2 bonding as Fig. 2. 

Material I is a soft material based on the force 

function of  quas imolecular  dynamics for pure 

copper.  Material  2 is introduced as a fictitious 

hard material which has two times the strength of  

material I. Based on the experimental  data for 

other  composi te  mater ia ls(Triantafyl l idis ,  et al. , 

1982), where the interf:ace is stronger than the 

substrate, these materials are assumed to be the 

adhesive strength of  the interface, which is twice 

that of  material 2. 

Therefore,  if each potential  is defined, we can 

derive the dynamical  eqnat ions of  motion of  the 

fictitious material as follows. 

( ,.5 
d T  2 (R*)  a (tr } R * ] 
"mater ia l  1 - -mate r ia l  I 
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d2R*dT 2 = ~ ' [ (  

�9 material 2 

d T  ~ - ~2 
�9 material 1 

3.0 ~_ 2.0 ~ R * ]  
IRa) ~ ~ ] ~ , * ,  j 

--material  2 

6.0 . 4.0 \ R* 7 
/R.) 

--material  2 

(8) 

Now, to solve Eq. (8) numerically, we adopt 

the leap-frog method, a kind of Verlet method 

which is frequently used in MD simulation. For a 

positive time step Z/t, let t k=kz / l ,  where k = 0 ,  1, 

2 ...... . Here, we assume that the number of parti- 

cles is N. Also, at tk let p~ having mass m, be 

located at r~,k, with velocity v~,k, and acceleration 

a,.k. Then, according to the leap-frog formulas, 

the position, velocity and acceleration are expres- 

sed as follows: 

b~i.1/'e = ~i.o+ ( - ~  --" f f  i,o/m,. (9) 

~i,k+l,,~ = iL,~-i/~+ (z/t) f f  l .k/mi,  k =  1, 2, ... 
71.h+a= ~i.~+ (Z/t) v',,k+i/z, k = 0 ,  1, 2, ... 

In order to simulate crack initiation and propa- 

gation behavior in QMD, it is necessary to break 

the quasimolecular bond when the force acting 

between two neighboring quasimolecules reaches 

a certain limit. In this study we introduce the 

separating criterion of quasimolecular bond 

recommended by Ashurst and Hoover(1976). 

There the quasimolecular bond is broken when 

the distance between two ne ighborhood  

quasimolecules reaches the distance R* at which 

d F / d R *  first becomes negative. From Eq. (8), 

then, R * =  1.05409. 

2 at the outer surface and soft material I at the 

inner  surface. Model III is the opposi te  of 

Model II. 

In order to generate naturally the crack initia- 

tion and propagation at the area under excessive 

tensile stress, a geometrical imperfection of the 

specimen is introduced as a V-notch shape on the 

upper convex surface of the specimen as shown in 

Fig. 3. 

As a boundary condition of uniform bending, a 

constant-displacement was applied to both ends. 

During uniform bending simulation, the arc 

length of the neutral axis of the specimen is kept 

at a constant value, and the quasimolecules of 

both ends are assigned to turn by a unit degree 

per unit time as shown in Fig. 4. 

As a boundary condition to simulate bending 

deformation, at each increment of the simulation 

the new positions of the quasimolecules at both 

ends are given by(Kim and Park, 1998) 

[s in  AO cos Z/O~[X] (10) 
= ~_cos AO - s i n  Z/OJ[_ YJ 

3. Numerica l  S imulat ion Models  

The size of the specimen is 8cm• 19. 9186cm, 

which gives an aspect ratio of 1:2. 5. In the 

simulation of bending fracture we use a laminar 

composite of two layers(material 1 and material 

2) with a thickness ratio of 1/3. To clarify the 

effect of the existence and position of the hard 

material layer of the composite material, we 

simulated 3 model cases and compared their 

results. Model l is the case of a homogeneous 

specimen of soft material  1. Model II is the 

case of a composite specimen with hard material 

Fig. 3 The initial imperfection of the specimen 
introduced on the upper convex surface. 

Fig. 4 Displacement boundary condition of 
quasimolecule at both ends. 
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- l - -J~-  . sin AO 1 

 6.co  0J 
where I is the half length of the neutral line. The 

Q matrix represents the rotation transformation 

of the coordinate axis, and the D matrix is 

introduced to take into consideration the fact that 

the neutral line of the specimen has a curvature 

proportion al to the turning angle. The turning 

angle 0 is measured from the vertical line to 

the quasimolecules on the end line. The time step 

,dT is taken as 0.1 and the turning step z/O is kept 

at 0.01. So, zlO/dT=O. 1 (deg/time). 

4. Numerical  Results  and Discussion 

First, the general features of bending deforma- 

tion of homogeneous materials were studied in 

order to clarify the effect of the existence and the 

position of a hard material layer on the bending 

fracture behavior. Figures 5, 6 and 7 show the 

deformation behaviors and crack propagation 

tendency during bending for the homogeneous 

material, model I case. Homogeneous material, 

the figures correspond to turning angles of 0 =  17 ~ 

18 ~ and 22 ~ , respectively. Until bending angle of 

0 = I T ' ( F i g .  5), the specimen seems to deform 

Fig. 5 Deformed shape at turning angle. 
0--17~ I )  

uniformly with pure bending, in which generally 

the upper convex surface is under tensile stress 

and the lower concave surface under compressive 

stress. However, when the turning angle reaches 0 

=18 ~ (Fig. 6), a visible crack from the notch 

occurs due to the high tensile stress acting on the 

upper convex surface, at which the bond of 

quasimolecules is first broken. The crack generat- 

ed from the notch propagates deep in the speci- 

men as the specimen continues to bend. In this 

figure, the crack propagated asymmetrically into 

two directions. It seems to result from the fact that 

the number of left side quasimolecules(2347) is 

smaller than that of right side quasimolecules 

(2348; The rest 3 is eliminated as the notch). 

Strictly speaking, this means the specimen is 

slightly asymmetric. 

Figure 7 for the deformed state of 0 = 2 2  ~ illus- 

trates that the crack propagation extends deeply 

into the center of the specimen, and another crack 

propagates from the inclined direction to the 

vertical line. Especially at the concave surface of 

the specimen, a compressive bifurcation is in- 

duced by extruding some quasimolecules outward 

on which a compressive force acts. Also the 

occurrence of the compressive bifurcation on the 

concave surface seems to decrease the crack prop- 

agation velocity. This tendency is supported by 

the experimental results on actual materials every- 

where(Triantafyllidis, et al, 1982). 

Figures 8, 9 and 10 illustrate the longitudinal 

force distributions, Fx, interacting between two 

neighborhood quasimolecules along the y-axis 

positions of the quasimolecules for 0 =  17 ~ 0 =  18 

~ and 22 ~ respectively. The measurement of the 

interacting forces was performed at the vicinity of 

the notch area because of the stress propagation 

Fig. 6 Deformed shape at turning angle. Fig. 7 Deformed shape at turning angle. 
0--18~ I )  0--22~ I )  
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Fig. 8 The force distribution along y axis position 
of 0 - -17  ~ for model [ �9 

Fig. 11 The initial state of specimen with V notch 

before bending. 

Fig. 12 Deformed shape at 0--17~ II).  

Fig. 9 The force distribution along y axis position 
of 0- -18  ~ for model I 

Fig. 1D The force distribution along y axis posi- 
tion at 0 - -22  ~ for model I �9 

velocity. Here, the forces at the quas imolecules  

locat ing between the 2755th and  the 2794th 

molecules  a long  the A A  cross - sec t ion  as marked  

in Fig. l I are measured.  In the case of  Fig. 8, for 

a b e n d i n g  angle  of  0 = 17 ~ the  l ong i tud ina l  forces 

of  each quas imolecu le  are d i s t r ibu ted  a lmost  

un i fo rmly  in p r o p o r t i o n  to the y -d i s t ance  of  each 

quas imolecu le  from the neutra l  axis, center  line of  

the specimen.  This  assures tha t  un i fo rm bend ing  

de fo rma t ion  is preserved until  0 - - 1 7  ~ as discus- 

Fig. 13 Deformed shape at 8 18~ II) .  

sed above.  But, in Fig. 9 at 0 - - 1 8  ~ , the p ropor -  

t iona l  d i s t r ibu t ion  of  long i tud ina l  force is first 

b roken ,  and  the force act ing at the upper  convex 

surface d imin i shes  to zero. The  area where  the 

force approaches  zero becomes wider  as the speci- 

men bends  more  as shown  in Fig. 1 0 o f 0  22 ~ . 

Figures  12--17 show the deformed states and  

the force d i s t r ibu t ion  at 0 - - 1 7  ~ , 18 ~ and  0 - - 2 0  ~ 

for  the  m o d e l  II s p e c i m e n ,  w h e r e  the  o u t e r  

mater ia l  has a h igher  s t rength  than  the inner  

mater ia l .  Unt i l  the specimen bends  to 0 - - 1 7  ~ 

(Fig. 12), the specimen seems to deform uni form-  

ly with pure  bending ,  in which  general ly  the 

upper  convex surface is under  tensile stress and  

the  lower concave  surface under  compress ive  

stress like the h o m o g e n e o u s  case of  model  I .  

However ,  the crack p ro p ag a t i o n  extends to the 

interface of  the specimen in Fig. 13. Fig. 14 

s h o w i n g  the deformed state at 0 = 2 0  ~ i l lustrates 
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Fig. 14 Deformed shape at 0=20~ II).  

Fig. 16 The force distribution along y axis position 
at 0 = 1 8  ~ for model II. 

Fig. 15 The force distribution along y axis posi- 
tion at 0 = 1 7  ~ fbr model II. 

that the crack propagat ion extends deep into the 

center of  the specimen. Also compar ing  with the 

model  I case, the crack for model  II propagates 

rapidly into the specimen. As shown in the Fig. 

14, we can see many voids that occur naturally 

around both sides of  the fractured surface. The 

number  of  voids is increased in conformity with 

the bending deformation,  it can be deduced from 

the fact that the neutral axis of  the model  II 

case moves in the upward direction because of  the 

existence of  high strength material on tile upper 

side. We can also find a compressive bifurcation 

at the lower concave surface of  the specimen. 

Figure 15 shows the force distr ibutions along 

the y-axis  of  quasimolecules  for the bending 

angle of  0 =  17 ~ There the longi tudinal  forces of  

each quasimolecule  are distributed almost uni- 

formly in propor t ion  to the y-dis tance of  each 

quasimolecule  from the neutral axis (center line of  

the specimen).  In this figure, the stepped incre- 

ment of  the longitudinal  tbrce shown at the 

boundary  of  two materials seems to be generated 

due to the difference in material strength between 

both sides. This result matches well with other 

experiments or  theories for laminar composi te  

Fig. 17 The force distribution along y axis position 
at 0 = 2 0  ~ for model II. 

mater ia l (Lee ,  1993; Yoshida,  et al. , 1998). 

Figures 16 and 17 also correspon to 0 - -  18 ~ and 

20 ~ respectively. In Figure 17 at 0 :=20 ~ , as can be 

expected, the zero force region becomes wider 

even though the propor t ional  distr ibut ion is 

maintained relatively well at the compressive 

region. 

Figures 18--21 show the deformed states and 

the fbrce distr ibutions at O - 15 ~ and 0 =  17 ~ for 

the mode l  I[I specimen,  which is the oppos i te  

case of  the model  l I .  Compar ing  with Fig. 6 of  

the model  1 case, Fig. 18 for the deformed state of  

0:=15 ~ shows that the crack occurs earl ier  than 

the mode l  I case. It seems to stem f rom the 

fact that the higher tensile stress acts on the 

convex surface, because the neutrall axis moves 

toward the bot tom due to the existence of  a high 

strength inner material.  However,  tile pattern of  

crack propagat ion is very similar with model  II 

except no that there are voids around the fractur- 

ed surface. As can be expected, the fracture 
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longitudinal forces is maintained except at the 

upper area of the notch site where the debonding 

of quasimolecules is generated. In Fig. 21, at 0 =  

17 ~ the region where the force approaches zero 

due to the debonding of quasimolecules becomes 

wider. 

Fig. 18 Deformed shape at 0=15~ III). 5. Conclusion 

Fig. 19 Deformed shape at 0 :17~  (Model lII). 

Fig. 20 The force distribution along y axis posi- 
tion at 0=15 ~ for model III. 

According to quasimolecular dynamic simula- 

tions for bending deformation of laminar compos- 

ites we were able to verify fracture behavior, the 

occurrence of voids, and the crack propagation 

pattern of the composite material. Comparing to 

the Model I case, the bending crack propaga- 

tion for the Model II case composite material 

occurs as bending progresses, and many voids 

near the cracked surface are generated. In the 

Model III case, bending fracture occurs earlier 

than the Model I case. However, the compres- 

sive bifurcation seems hardly to appear on the 

bottom surface of the hard material. Therefore we 

can conclude that if a composite material with 

notch is subjected to uniform bending, the most 

dangerous case for bending fracture is the Model 

III case. Moreover, according to the position of 

the hard material in the composite material under 

bending deformation, the magnitude of the bend- 

ing angle to initiate the fracture at the crack tip 

was varied significantly. This reason may be 

attributed to the movement of the neutral line of 

the composite specimen. We leave for futher study 

this movement of the neutral line. 
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